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1 Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46, Allée d’Italie, 69364 LYON
Cedex 07, France
2 Condensed Matter Laboratory, Department of Physics, Faculty of Science,
University Of Douala, PO Box 24157, Douala, Cameroon
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Abstract
We report a theoretical study of modulational instability of extended nonlinear
spin waves in a one-dimensional ferromagnetic chain. The investigation is made
both analytically within the framework of the linear stability analysis and also
numerically by means of molecular dynamics simulations. Using a Holstein–
Primakoff transformation for the spin operators, the Hamiltonian, which is
constituted by a Heisenberg exchange term, a biquadratic exchange energy, an
anisotropic energy and a Zeeman term, is bosonized. Then we derive a discrete
nonlinear Schrödinger-like equation for the spin-wave motion. Using a linear
stability analysis, we establish the stability criteria of the spin waves in such a
ferromagnetic chain. From our numerical simulations of the discrete spin chain
for the onset of instability, it emerges that the analytical predictions are correctly
verified. For a long timescale, depending on the strength of the biquadratic
exchange interaction relative to the exchange energy and the anisotropy energy,
on the one hand an intrinsic localized wave train can be created displaying
properties of the breather motion. On the other hand, due to the increasing
size of the instability domain, with increase of the biquadratic parameter, the
instability can fully develop and the linear stability fails; consequently, the
time evolution of the modulated spin waves can show both regular and chaotic
behaviour.

1. Introduction

Nonlinear excitations in one-dimensional (1D) magnets have generated during the past three
decades a great deal of experimental [1–4], and theoretical interest [5–11]. Within the set
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of nonlinear excitations in magnetic systems, the most studied is that of soliton type. The
soliton solutions for spin chains have been investigated by several different approaches. In the
classical approach, general single-soliton solutions are obtained for a continuum version of
the classical linear Heisenberg chain [7]. In a quantum spin system, a bosonic representation
of spin operators turns out to be a very suitable method for studying the solitary waves,
because they allow us to include quantum corrections in a systematic way. In spin coherent
representation [12], one can work directly with the operators, make no approximation to the
Hamiltonian, and develop an exact nonlinear equation for the quantum system [13], but this
method seems to be limited because it works with a limited number of interaction terms in the
Hamiltonian. To avoid this limitation, it is necessary to use a truncated Holstein–Primakoff
expansion for the spin operators [8, 14]. Then the Hamiltonian can be bosonized. Further,
working in the coherent-state representation of Glauber [15], and making small-amplitude
and long-wave approximations, one finds solitary-wave profiles identical to classical solitons,
which is the so-called semiclassical treatment.

The realization that lattice discreteness can stabilize highly localized excitations in perfect
nonlinear and non-integrable lattices has been a very recent conceptual breakthrough in
nonlinear dynamics [16, 17]. The analogy between lattice vibrations and spin waves has
led to studies of intrinsic localized spin-wave modes (ILSMs) in semiclassical and classical
magnetic models [18–32]. The ILSMs are non-topological and can exist in discrete lattices
of any space dimension, so they should be contrasted with the continuum topological kink
solitons that have been well studied in a 1D magnetic system [7].

In most of the aforementioned studies related to ILSMs of magnetic chains, great efforts
have been made in the theoretical details for understanding the important effects of lattices
discreteness on intrinsic localization, their existence, their stability and creation criteria
in various antiferromagnetic crystals [33]. Meanwhile studies on the ILSMs were done
in antiferromagnets; research was also growing on the stability of the extended nonlinear
excitations in antiferromagnetic systems [33]. However, only very few studies on ILSMs of
nonlinear extended spin waves have been devoted to the ferromagnetic systems. For instance,
the important problem of the existence and stability of extended nonlinear spin-wave excitations
in ferromagnetic systems is still an open question. The modulational instability of extended
(MIE) nonlinear spin waves, which is a good method to answer the above-mentioned open
question, can be treated quantitatively by different approaches. We use here the method of
second quantization based upon the creation and annihilation magnon operators, obtained
from the spin operators with the Holstein–Primakoff transformation [8]. From this point of
view, the MIE can be understood as a mechanism for dynamical localization of spin waves in
homogeneous magnetic lattices. Since the dissipation of spin waves in magnetic materials is
weak compared to that in lattice vibration in crystals, from a theoretical and an experimental
point of view nonlinear ferromagnetic systems may provide more tractable candidates for the
investigation of ILSMs and modulational instability (MI) of excitations which can be extended
at nanoscale dimensions, as well as for future exploration of the quantum properties of such
excitations.

This paper aims at carrying out a theoretical analysis, with first an analytical calculation
of instability criteria that is based on a discrete nonlinear Schrödinger-like equation obtained
after going beyond a second-quantization scheme of the Hamiltonian. Second, with numerical
simulations of the modulational instability of the nonlinear extended spin waves, we verified
analytical results and put out some new features of these new nonlinear excitations in discrete
ferromagnetic system.

The material of this paper is organized as follows. In section 2, we describe the model and
introduce the Holstein–Primakoff transformations on the spin operators, and next we derive the
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discrete nonlinear Schrödinger-like equation of motion. Section 3 is devoted to the analytical
studies of the modulational stability/instability of the extended nonlinear spin waves. We then
continue in section 4, where we investigate numerically the accuracy of the analytical results.
In section 5, we investigate the different wave pattern formation that the nonlinear extended
spin waves may display. Section 6 is devoted to the energy distribution in the ferromagnetic
chain, and in section 7 we conclude the paper.

2. Model Hamiltonian and formalism

The model we deal with in this section is a discrete chain of spins interacting by short-range
nearest-neighbour ferromagnetic exchange interactions. It is also subject to an anisotropic
field perpendicular to the chain direction and an applied magnetic field. Hence, the following
Hamiltonian describes it:

H = − J

2

∑

iρ

�Si �Si+ρ − gµB Be

∑

i

Sz
i + A

∑

i

(Sz
i )

2 − α
J

2

∑

iρ

(�Si �Si+ρ)
2 (2.1)

where the sums run over the lattice sites separated by a distance a0 along the Z -axis and
the index ρ stands for the nearest neighbour of each spin. Here, Sδi (δ = x, y, z) is the δ
component of the spin vectors on the i th site. The first term in Hamiltonian (2.1) represents
the Heisenberg exchange energy where J > 0 is the short-range nearest-neighbour exchange
coupling constant. The spin may also be placed in an external field (Be) directed along the
Z -axis, leading to the second term, representing the Zeeman energy, where the quantities g
and µB are the Landé g factor and the Bohr magneton, respectively.

The third term is the single-ion uniaxial anisotropy energy due to the crystalline field. It
constrains the spin to lie in a plane perpendicular to the chain axis. A is the uniaxial crystal-field
anisotropy parameter.

The fourth term represents the biquadratic isotropic exchange interaction, which should
be considered for a high-spin system, with S � 1 [34]. The parameter α measures the strength
of the biquadratic exchange, in the classical approximation. Adler gave a discussion of these
biquadratic exchange interactions through an extensive review of experimental results, which
establish the importance of this term in a variety of compounds [35]. The necessity of including
such a term goes back to Schrödinger and the interpretation in terms of a super-exchange
mechanism was given by Anderson [36]. Kapor and Skrinjar gave also another interpretation
of the biquadratic exchange interaction in terms of a three-spin exchange interaction [37]. For
a ferromagnetic ground state, the parameter α has to satisfy, for S = 1, 0 < α < 1, and for a
spin with S > 1 the condition is −2/(S(2S − 3)) < α < 2(S + 1)/S2 [34].

Since we are going to use a semi-classical treatment in our study and in order to
bosonize Hamiltonian (2.1), we need to treat this Hamiltonian (2.1) in the Holstein–Primakoff
representation for the spin operator

S̃+
i = √

2(1 − ε2a+
i ai)

1/2εai = √
2[1 − ε2a+

i ai/4 − ε4a+
i ai a

+
i ai/32 + O(ε6)]εai (2.2a)

S̃i− = √
2εa+

i (1 − ε2a+
i ai)

1/2 = √
2εa+

i [1 − ε2a+
i ai/4 − ε4a+

i ai a
+
i ai/32 + O(ε6)] (2.2b)

and

S̃z
i = 1 − ε2a+

i ai (2.2c)

where ε = 1√
S

and S̃i = Si
Sc

. Sc = h̄S and the condition Sc = limh̄→0
S→∞(h̄S) is the semi-classical

limit. Next, we introduce the dimensionless variable for the Hamiltonian

H̃ = H

J (Sc)2
. (2.2d)
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By substituting equations (2.2) into (2.1), we get after retaining terms of order O(ε6) the
Hamiltonian

H̃ = G(a+
i , ai , a+

i+ρ, ai+ρ) + O(ε6) (2.3)

where G is the expression of H in terms of the boson creation and annihilation operator a+
i , ai ,

a+
i+ρ , ai+ρ forms, in different sites of the spin chain. It is well known that the Bose operators

satisfy the following Heisenberg equation of motion:

i

(
ε2

J Sc

)
∂an

∂ t
= [an, H̃ ]. (2.4)

Then we calculate the commutation function expressed by [an, H̃ ], and now we find the
equation of motion expressed by the bosonic operators a+

n , an , provided that they fulfil the
commutation rules, i.e. [am, a+

n ] = δmn , with δnm = 0 if n �= m, or δnm = 1 if n = m. Then,
we obtain an equation in the form

i
∂an

∂ t
= F(a+

n , an,a
+
n+ρ, an+ρ). (2.5)

Since we are concerned with extended nonlinear excitations of spin induced by nonlinearity in
the magnon system in equation (2.3), in which a cluster of spin may undergo a large excursion
as compared with the rest of the spins, a physically acceptable candidate for quantum states of
such large-amplitude collective modes may be coherent states [38]. Therefore, we follow our
study by employing the coherent-state ansatz for the eigenfunction ψn(t) of the Hamiltonian
H

ψn(t) = �n exp
(− 1

2 |ψn|2
) × exp(ψna+

n )|0〉 (2.6)

that defines the pure coherent state with |ψn(t)〉, that represents the coherent-state eigenvector,
which is non-orthogonal and over-complete, and in which |0〉 defines the vacuum eigenstate
of the boson system. This said, for a given state vector |ϕn〉 defined by the relation

|ϕn〉 = �n|ψn〉 (2.7a)

the following properties are fulfilled.

a+
n |ϕn〉 = ψ∗

n (t)|ϕn〉 (2.7b)

an|ϕn〉 = ψn(t)|ϕn〉. (2.7c)

The expectation value of a Hamiltonian operator in equation (2.3) in the state |ϕn〉 can be
obtained using the diagonal matrix elements of 〈ϕn|H (a+

n , an, a+
n+ρ, an+ρ)|ϕn〉. These elements

are known to be good operator representatives [13]. The result is therefore a real scalar function
expressed by a dimensionless Hamiltonian function.

H̃ = H̃(ψ∗
n , ψn, ψ

∗
n+ρ, ψn+ρ). (2.8a)

Thus, using these above-mentioned coherent state properties in the equation of the boson mode
motion given in equation (2.5), it emerges that

i
∂ψn

∂ t
= A1ψn + A2

∑

ρ

(ψn+ρ − ψn) + A3|ψn|2ψn

+ A4

∑

ρ

(|ψn|2ψn+ρ + |ψn+ρ |2ψn+ρ + ψ2
nψ

∗
n+ρ).

+ A5

∑

ρ

|ψn+ρ |2ψn − A6

∑

ρ

ψ2
n+ρψ

∗
n . (2.8b)

Here the index ρ still stands for the nearest neighbours of a spin on the lattice site n. In the
next calculations we chose the particular values of ρ = ±1. Before continuing, it is important
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to specify that in the low-temperature excitations the introduction of a coherent state helps in
projecting out the unphysical boson states, provided that no essential information is lost in
this treatment. In this respect, working with the boson operators instead of the spin operators
that act as circularly polarized variables as in other works in antiferromagnetic chains [26–32]
should also lead to keeping essential features of our one-dimensional spin chain.

As we developed above, the framework of our present considerations here is the semi-
classical spin theory. The nonlinear differential-difference equation (2.8b) is a modified
discrete nonlinear Schrödinger-like equation. It defines the collective excitations for the boson
mode of a discrete spin lattice. It is extremely difficult to perform a complete analysis of
equation (2.8b) analytically. But a continuum approximation can be used to approach analytical
soliton solutions of such a system [8, 34]. Since we are interested in modulational instability
of the extended nonlinear excitations that may arise from such a discrete system, we shall then
follow by performing an analytical calculation as well as a numerical computation for such a
study.

3. Modulational instability of the extended nonlinear spin wave

The modulational instability of a plane wave in such a magnetic spin lattice is investigated by
studying the stability of its amplitude in the presence of sufficiently small perturbation so that
one can linearize the equation of the envelope and the carrier wave. Before we continue let us
recall that Dauxois and Peyrard have shown that the modulational instability of a linear wave
is a first step towards energy localization in nonlinear lattices [23]. The same phenomenon
has been studied in various contexts: in fluid dynamics [39], where it is usually called the
Benjamin–Feir instability, nonlinear optics [40] and plasma physics [41]. The first step to
probe some particular features of these excitations in a ferromagnetic chain is to introduce a
small perturbation in the amplitude and in the phase,and look for the solution of equation (2.8b).

3.1. Analytical results
To study the modulational stability/instability of an extended nonlinear wave in such a system,
we investigate the time evolution of a perturbed nonlinear wave of the form

ψn(t) = [φ0 + bn(t)] exp i[θn(t) + ϕn(t)] (3.1)

where θn(t) = qn − ω0t , with ω0 that obeys the nonlinear dispersion relation

ω0 = A1 − 2A2 + (A3 + 2A5)φ
2
0 + (2A2 + 6A4φ

2
0) cos(q)− 2A6φ

2
0 cos(2q) (3.2)

φ0 is a constant amplitude of a plane wave; the lattice spacing parameter a0 is set to unity for
the sake of simplicity. Replacing equations (3.1) in (2.8b) and assuming |bn(t)| 	 φ0 and also
that |ϕn(t)| 	 θn(t), and finally also taking into account equation (3.2), we obtain the following
system of linear coupled equations:
∂bn

∂ t
= A2φ0(ϕn+1 + ϕn−1 − 2ϕn) cos q + A2(bn+1 − bn−1) sin q + A3φ

3
0(ϕn − ϕ∗

n)

+ A4φ
3
0(3ϕn+1 + 3ϕn−1 − 2ϕ∗

n − 2ϕ∗
n+1 − 2ϕ∗

n−1) cos q

+ 3A4φ
2
0(bn+1 − bn−1) sin q + A5φ

3
0(ϕn+1 + ϕn−1 − ϕ∗

n+1 − ϕ∗
n−1)

− 2A6φ
3
0(ϕn+1 + ϕn−1 − ϕn − ϕ∗

n) cos 2q

− 2A6φ
2
0(bn+1 − bn−1) sin 2q (3.3a)

−φ0
∂ϕn

∂ t
= A2(bn+1 + bn−1 − 2bn) cos q − A2φ0(ϕn+1 − ϕn−1) sin q + A3φ

2
0(bn + b∗

n)

− 3A4φ
3
0(ϕn+1 − ϕn−1) sin q + A4φ

2
0(3bn+1 + 3bn−1
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− 2bn + 2b∗
n+1 + 2b∗

n−1) cos q

+ A5φ
2
0(bn+1 + bn−1 + b∗

n+1 + b∗
n−1)− 2A6φ

2
0(bn+1 + bn−1 + bn + b∗

n)

× cos 2q + 2A6φ
3
0(ϕn+1 − ϕn−1) sin 2q. (3.3b)

Such a linear system of equations has a general solution of the form
(
ϕn

bn

)
=

[
ϕ1 ϕ2

b1 b2

](
exp i(Qn +�t)

exp −i(Qn +�∗t)

)
(3.4)

with b1, b2, ϕ1, ϕ2 that are arbitrary real constants, and Q is the wavenumber of the noise. �∗
is the complex conjugate of the noise’s frequency� = �r + i�im, the index (r) and (im) stand
for the real part and imaginary part of the frequency of the noise, respectively. Introducing
solution (3.4) in (3.3), we obtain a set of four complex equations. This system leads to two
sets of four real equations by cancelling the real and imaginary parts. Then the cancellation
of the imaginary part gives a system with the following form:





c1 + σi c2 c3 c4

a1 a2 − σi a3 a4

e1 e2 e3 + σi e4

d1 d2 d3 d4 − σi









ϕ1

b1

ϕ2

b2



 =




0
0
0
0



 (3.5)

which only has a non-trivial solution if its determinant vanishes. This gives the condition

σ 4
i + �2σ

2
i + �0 = 0 (3.6)

with σi = φ0�im that determines �im. The different components of the matrix are expressed
in the appendix. Equation (3.6) can be factorized, thus it is possible to derive the analytical
expression of the imaginary part of the frequency of the noise modulating the nonlinear wave
in the following implicit forms:

�im1 = ±√
α1(q, Q) and �im2 = ±√

α2(q, Q) (3.7)

where �2
im1 ·�2

im2 · φ4
0 = �0 and the explicit forms of α1(q, Q) and α2(q, Q) are given in the

appendix. They show how the stability and instability regions depend not only on q and Q but
also on the model parameters. The part of the above-mentioned set of equations that determines
the real part of the frequency yields a system which is diagonal. In the corresponding system,
all the diagonal terms are equal so that the cancellation of its determinant reduces to a single
equation. Therefore, given a wavevector q of an excited wave modulated by a wave with
wavenumber Q, for each of the four possible values of the imaginary part of the frequency
given in equation (3.7), the corresponding real part of the frequency of the modulating wave
in the system has the same value �r, expressed by

�r = (2A2 + 4A4φ
2
0) sin(Q) sin(q)− 4A6φ

2
0 sin(Q) sin(2q). (3.8)

The general solution of the system of equations (3.3) initially formulated in equation (3.4) will
appear as a superposition of terms having the time dependence exp(i�mt) and exp(−i�∗

mt),
where the �ms, with 1 � m � 4, are the frequencies of the modulation wave relative to the
extended nonlinear spin wave. The stability of the extended nonlinear spin wave is determined
by the imaginary part of �m given in equation (3.7). However, here we need to emphasize
that, as far as the roots of the polynomial given in equation (3.6) are concerned with the
present study, the modulational instability (MI) phenomenon of the extended nonlinear spin
wave occurs when one of the four elements of the imaginary part of the noise’s frequency
is non-nil, i.e. �im = Im{�m} �= 0, otherwise it is stable only if the imaginary part of the
frequency vanishes. This MI is set up by an exponential growth of the amplitude of the
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(a)

(b)

Figure 1. (a) A typical plot of regions of modulational instability in the (Q, q) plane. The black
regions correspond to the unstable region while the other region corresponds to the stable region.
(b) Three-dimensional plot of the growth rate of modulational waves as a function of both the
wavevector of the carrier wave and the perturbation wave. The biquadratic parameter is α = 0.06.

perturbation. Since the lattice is discrete, wavenumbers q and Q that differ by 2π correspond
to the same wave. Thus, our study will be restricted to [0, 2π] both for the carrier and for
the perturbation wavenumbers. Based upon the roots of equation (3.6), which is related to the
dispersion relation, the results obtained for the stability diagram can be obtained either by the
analytical solutions or numerically solving equation (3.6) and the result would be the same.
But the stability diagrams result presented here are obtained by numerical computation. With
the above established criteria, the main features of the instability are highlighted in figure 1(a)
where the stability diagram is plotted in a (q, Q) plane. In this figure, the two regions that
are dark correspond to the regions of instability in which the amplitude of any wave would
be expected to suddenly display an exponential growth. The corresponding growth rate is
depicted in figure 1(b) as a function of the wavenumber Q of the noise by single bump with
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different size for different values of the wavenumber q of the carrier. In this instability region,
for a given carrier wavevector q , although the growth rate as function of the noise wavenumber
has the same shape. i.e. a single bell, it remains a fact that there exist wavenumbers q for
which the growth rate attains a greater value than on the other shapes. The other region, which
is not dark, corresponds to the stability zone with a growth rate that vanishes. According to
figures 1(a) and (b), a carrier wave with either a short wavelength or a long wavelength would
be stable to any perturbation wave with any wavelength provided that its amplitude remains
smaller than that of the carrier wave, but in the case of a carrier wave with approximately
medium wavelength one should take care of the wavelength of the modulating wave.

4. Numerical experiments

The results presented in the previous section were deduced from a linear stability analysis. But
as is well known, this linear stability analysis seems to be limited because it can only detect
the onset of instability, and does not tell us anything about the behaviour of the system when
the instability grow after a long time. This is why, in this section, we present the results of
a numerical experiment in a discrete ferromagnetic chain. Following this, the validity of the
analytical result obtained from the linear stability analysis of the extended nonlinear waves is
discussed for various biquadratic exchange parameters. The influence of the anisotropy on the
stability is also discussed. We will also investigate the dynamics of the different patterns of the
nonlinear wave that can propagate under modulation in such a discrete magnetic chain. For this
purpose, we are going to solve numerically the set of coupled nonlinear differential-difference
equations of motion that would be derived from equation (2.8b).

4.1. Computer-simulation details

Our numerical calculations have been done through a computer-simulation program in order
to make contact with the analytical prediction at short time as well as to examine longer-time
dynamics of the nonlinear system which is subject to MI of the extended spin wave. For
this purpose, molecular dynamics are used and we start with the dynamics of cyclic magnetic
chains of 128 and 256 spins that are simulated, using a fourth-order Runge–Kutta algorithm.

We have introduced, as an example, the following set of parameters of the CsNiF3 structure,
namely [7] J = 23.6 K, A = 9 K and S = 1. In addition, working with the cyclic magnetic
chain means that we chose periodic boundary conditions.

As far as equation (2.8b) is concerned with the description of the subsequent time
evolution of the nonlinear spin-wave excitations, the origin of the energy scale of our discrete
ferromagnetic chain is chosen from the uniform ferromagnetic state. Its dimensionless form is
given in terms of the wavefunction and its complex conjugate for the boson mode at different
lattice sites by E = ∑

nρ Enρ , with

Enρ = e1|ψn|2 + e2|ψn+ρ |2 + e3(ψnψ
∗
n+ρ + ψ∗

nψn+ρ) + e4|ψn|4 + e5|ψn+ρ |4
+ e6(|ψn|2 + |ψn+ρ |2)(ψnψ

∗
n+ρ + ψ∗

nψn+ρ)

+ e7|ψn|2|ψn+ρ |2 + e8(ψ
2
nψ

∗2
n+ρ + ψ∗2

n ψ
2
n+ρ); (4.1)

here, the coefficients ei with i ∈ (1, . . . , 8) are expressed in the appendix.
With a suitable choice of the time step, this energy is a conserved quantity. It was frequently

monitored in our simulations to insure an accuracy of about 0.1% for the fourth-order Runge–
Kutta scheme.
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The initial conditions, which are typically at time t = 0, initial profiles of the spin deviation
are obtained by using a complex wavefunction that can be written as

ψn(t) = ψ re
n (t) + iψ im

n (t). (4.2)

Here, the upper indices (re) and (im) stand for the real and the imaginary part, respectively. We
start from a solution of the discrete nonlinear equation (2.8b) as a plane wave of wavevector
q with an amplitude which is perturbed by a modulation plane wave with wavevector Q since
we are interested in modulational instability. Thus initially, in our numerical simulation, the
real and the imaginary part of the wavefunction of the spin wave are coherently modulated in
the form

ψ re
n (0) = (φ0 + η cos(nQ)) cos(nq) (4.3a)

ψ im
n (0) = (φ0 + η cos(nQ)) sin(nq). (4.3b)

This initial condition is therefore a modulated plane wave with amplitude φ0 that is the same
parameter as the one of the preceding section and the modulation amplitude η 	 φ0. In our
simulation, the wavenumbers q(Q) are defined modulo 2π in the lattice and chosen in the
form q = 2πp

N (Q = 2π P
N ), where p(P) is an integer. So, using the initial condition given in

equations (4.3) has revealed that in this simple coherent modulation form of the amplitude this
initial condition allows us to study the response of the system separately for each modulation
wavevector.

4.2. Numerical-results

Once the initial conditions of equations (4.3) are given, the time evolution of a modulated
spin wave can be investigated by means of the above-mentioned molecular dynamics (MD)
simulations. In order to monitor the time evolution of individual Fourier components, we
define the complete spatial Fourier transform of the wavefunction.

m(p, t) =
N−1∑

n=0

ψn(t)ei(2πnp/N), with 0 � p � N/2. (4.4)

Notice that in equation (4.4),ψn(t) = 〈an(t)〉 is the expectation value of the magnon operator,
which is proportional to the transverse value of the precessing magnetization M+ = Mx + iMy

and thus represents a spin-wave amplitude [42].

4.2.1. Stability for short time. For specific examples, we first consider a chain of 128 spins,
keeping in mind that periodic boundary conditions are used. The biquadratic parameter is taken
to be α = 0.06 and the amplitude φ0 = 0.25. Figure 2(a) shows the evolution of a carrier
wave with wavevector q = 35π/64 modulated by a small-amplitude wave (η = 0.0025), with
wavevectors Q = ±52π/64, for about 500 units of time. According to figure 1(a), stability
is predicted for waves with these wavenumbers. This is effectively verified numerically in
the log–linear plot of figure 2(a), in which none of the q ± Q satellite side bands display any
exponential growth. Even the 2q modulation, which is not taken into account in the initial
conditions, displays constant amplitude. Figure 2(b) shows the complete Fourier spectrum on
which we can observe that the stability predicted in figures 1(a) and (b) is numerically verified.
The same verifications of the stability of waves based upon the results of figure 1(a) can be
done with this timescale and physical parameters but with different wavenumbers, provided
that the wavenumber of the perturbation does not fall in the instability zone.
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Figure 2. Time evolution of the carrier wave with q = 35π/64 and φ0 = 0.25 modulated by a
small-amplitude wave with Q = 52π/64 and η = 0.0025. (a) Time evolution of the amplitude of
the main Fourier transform components at q (solid line), q + Q (dashed curve), q − Q (dot–dashed
curve) and 2q (dot–dot–dashed curve). A logarithmic scale is used for the ordinate. (b) Time
evolution of the complete Fourier spectrum.

4.2.2. Stability for long time and influence of the biquadratic exchange interaction and
the anisotropy. If the duration of the simulation is very long, the first result that may be
surprising at a first glance is that, contrary to what is obtained in previous works on MI
processes [33, 45, 47] (to cite a few), the prediction of stability from linear analysis seems
to rule out the occurrence of instability if the biquadratic parameter is in the range α � 0.5.
The reason for this predictability is that, even if there is a presence of higher harmonics and
their combinations that is neglected at the initial step of the simulation, in the outcome of the
simulation, all the time, all the wavenumbers of the higher harmonic would fall outside the
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Figure 3. Time evolution of the carrier wave with q = 27π/64 (p = 54) and φ0 = 0.15 modulated
by a small-amplitude wave with Q = 61π/64 (P = 122) and η = 0.0015. (a) Time evolution of
the amplitude of the main Fourier transform components at q (solid line), q + 2Q (dashed curve),
q −2Q (second solid line), q − Q (dot–dashed curve), q + Q (dot–dot–dashed curve), 3q (dot–dot–
dot–dashed curve); the second dashed line is for the 2q modulation. The biquadratic parameter is
α = 0.06. A logarithmic scale is used for the ordinate. (b) Time evolution of the complete Fourier
spectrum.

instability zone. Consequently, none of the different mode displays any growing behaviour.
We explain this special feature by the fact that, first, the regions of instability have very small
size; and second, in this range of wavenumbers, these simulations confirm the prediction of
the stability when a modulated wave moves in the spin chain with a vanishing imaginary part
of the frequency of the modulating wave. To illustrate this point, the long-time evolution of
a perturbed wave with wavevector q = 27π

64 (p = 54) in a ferromagnetic chain of 256 spins
is plotted in figure 3(a). In this case, the modulation wavevectors Q = ± 61π

64 (P = 122) also
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lie in the stable region as can be verified in figure 1(a). Here, the biquadratic parameter is
chosen to be α = 0.06, that is a best value for the stability for a very long-time evolution of the
modulated waves. With the thus-chosen parameters, we observed in figure 3(a) where the main
feature of the stability is depicted that even though there is a presence of other harmonics that
have a very small and constant amplitude for long time, the main carrier wave time evolution
is also stable for a very long time. We also notice the presence of not only the principal q ± Q
satellite modulations that are considered in the initial condition, but also the presence of other
combination modes 2q , 3q, . . . and also q ± 2Q. The other higher harmonics even if they
are not presented here also display constant amplitude but with smaller magnitude than that of
the 3q modulation. The magnitude of the modes generated decreases with increasing of the
harmonic order. In this case, we can attest that the discrete ferromagnetic chain can support
long-lived excitations in the presence of low-amplitude noise with suitable wavenumbers.
Furthermore, it is possible with our approach of modulational instability to create localized
excitations or a string of localized excitations in a discrete ferromagnetic chain. This apparent
phenomenon can be expected because of the fact that the lattice is discrete. Therefore, in
such a condition the lack of continuous translational symmetry would lead to a trapping of
the pulses generated by the nonlinear instability, by the discreteness effects, to finally form
strong localized or a string of strong localized long-lived excitations. Figure 3(b) shows the
time evolution of the complete spectrum where, due to the constant behaviour and the smaller
magnitude of the other Fourier component compared to that of the carrier wave, the additional
combination modes generated from wave-mixing processes cannot be seen in this spectrum.
Notice that for these simulations we used a timescale with t = 2TSWF

J S . i.e. t ≈ 2TSWF
25 as the

unit of time. Here TSWF denotes the period of the spin wave of a ferromagnetic chain that can
be derived from the frequency given in the dispersion relation of equation (3.2) in the case of
the low-amplitude and long-wavelength approximation. This said, the long-time simulation
observed in the result of figure 3(a), which shows that the modulated wave is stable over the
entire time range investigated corresponding to 2200 units of time, is about 176 periods of a
carrier at spin-wave frequency.

Nevertheless, it is also possible to obtain the instability if the wavenumbers of the noise fall
in the instability zone. To illustrate this point, we present in figure 4(a) the complete Fourier
spectrum of the full time evolution of a carrier wave with wavevector q = 44π

64 modulated by
waves with wavevectors Q = ± 61π

64 that lie in the instability zone. The physical parameters
here are the same as those of figures 3(a) and (b). We observe in this figure that initially the
amplitude of each mode increases slowly with increasing time because of the low value of
the growth rate. However, after about 800 units of time (64 periods of spin waves) all the
different modes and combination modes suddenly display a large increasing behaviour of their
amplitudes. This is the proof that at this timescale the system is completely unstable. But
in order to understand what happens in this unstable zone we depict in figure 4(b) the time
evolution of some principal modes. In this figure it is realized that, although the amplitude of
most of the Fourier component of the different modes initially increases with a small rate, the
3q modulation is the one that rapidly seeds the instability process in the system. This can be
understood by the fact that its magnitude increases with a higher rate than all the other modes.
This is also the proof that, although the linear-stability analysis neglects additional combination
mode waves generated though wave-mixing processes, these, albeit small at the initial stage,
can become significant and drive the system into a chaotic regime at large timescale if its
wavevector falls in an unstable domain.

Plotted in figures 5(a) and (b) are the stability diagram and the corresponding growth rate,
respectively, for α = 0.7. From these figures, we realize that the instability regions are larger
and that the maximal size of the growth rate had increased, compared to those of figures 1(a)
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Figure 4. Complete spectrum of the time evolution of the carrier wave with q = 44π/64 and
φ0 = 0.12 modulated by a small-amplitude wave with Q = 61π/64. (b) Time evolution of
the amplitude of the main Fourier transform components at q (solid line), q − Q (dashed–dot–
dashed curve), q + Q (dashed–dot–dot–dashed curve), 2q (dashed curve), q + 2Q (second solid
curve), q −2Q (second dashed curve) and 3q (dashed–dashed–dot–dot–dot–dashed–dashed curve)
modulation.

and (b), respectively. Thus, materials for which the biquadratic interaction is higher than the
anisotropy interaction would be likely to show a strong modulational instability. Moreover,
for higher values of the biquadratic exchange parameter (i.e. α > 0.5), our simulations show
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(a)

(b)

Figure 5. (a) A typical plot of regions of modulational instability in the (Q, q) plane for the
biquadratic parameter α = 0.7. The dark regions correspond to the unstable region while the
other region corresponds to the stable region. (b) For the same value of the biquadratic parameter,
depicted here is a three-dimensional plot of the growth rate of modulational waves as a function of
both the wavevectors of the carrier wave and the perturbation wave.

that waves which are predicted to be linearly stable for the smallest value of α (i.e. α < 0.5)
can become unstable. The reason for this unpredictability is due on one hand to the size of the
instability region that increases, and on the other hand the principal Fourier component falls
in the instability domain and higher harmonics and their combination that are neglected at the
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initial step of the simulation appear with an exponential growth. To justify this argument let
us choose for instance the point labelled by (1) in figure 1(a), which corresponds to the point
with q = 45π

64 (p = 90) and Q = 57π
64 (P = 114). In figure 1(a) this point corresponds to a

stable point; a simulation of the long-time evolution of a perturbed wave with wavenumbers
corresponding to this point would lead to the similar results as those of the case of figures 3(a)
and (b). In figure 5(a) for which α = 0.7 this point is in the instability zone and thus any time
evolution in Fourier space of a perturbed wave with the corresponding wavenumbers would
lead to similar results as those of figures 4(a) and (b). Furthermore, let us depict in figure 6(a)
the time evolution of a perturbed wave, with wavevector q = 15π

32 in a ferromagnetic chain of
256 spins. In this case, the modulation wavevectors Q = ± 15π

64 lie in the stable region in the
point labelled by (2′) as can be verified in figure 5(a); its corresponding point in figure 1(a) is
labelled by (2). Here, the biquadratic exchange parameter is chosen to be α = 0.7. With the
thus-chosen parameters, we observe in figure 6(a) that, even though there is a presence of other
harmonics, the main carrier wave time evolution is stable for a very long time. We notice the
presence of the satellites at q ± Q modulations that are considered in the initial condition, and
also that of other combination modes 2q , 3q, . . . and q ±2Q that are progressively generated in
the system. The other higher harmonics even if they are not presented here also display constant
amplitude but with smaller magnitude than that of the 3q modulation. This magnitude would
decrease with increasing of the harmonic’s order. In this case, the 2q mode can be obtained
by the combination of a q mode with 2Q modulation. One of the most important results
while looking at figure 6(a) is the behaviour of the other modes. Their amplitudes display an
increasing behaviour with increasing time, but with a very low rate such that their magnitudes
remain very small compared to that of the carrier wave component. Finally, in this case, even
if the other modes display a slight increasing behaviour, they do not increase up to significant
values. Therefore the prediction of stability remains likely. In figure 6(b), we have plotted
the complete Fourier spectrum in which, due to the smaller values of the magnitude of the
other harmonics generated by wave-mixing processes compared to that of the carrier wave, no
apparent modulation is seen.

Needless to mention, these simulations demonstrate that, for a given ferromagnetic
material, if the strength of the biquadratic exchange interaction is smaller than or at least
close to that of the crystal anisotropy field, i.e. the parameter α fulfils α � 0.5, the physical
system can support very long-lived excitations that are excited by MI processes. However,
if the strength of the biquadratic interaction is higher than that of the crystal field anisotropy
(i.e. α > 0.5), even if the physical system can still support excited carrier waves in a reduced
zone of stability, it is clear that they would finally be destroyed by instability processes if the
biquadratic parameter is further increased. This can be understood by the fact that, for small
values of the biquadratic exchange parameter, the combination modes at q ± 2Q, q ± 3Q, . . .
generated by wave-mixing processes induced by the nonlinearity appear initially with lower
amplitude than that of q ± Q by at least a factor of β, and still lie in the stable region after a
very long time. Even the 3q modulation that appears initially with a greater amplitude than
that of the q ± Q satellite still lies in the stable zone after a long time. Meanwhile, in the case
of the highest values of the biquadratic exchange parameter, the largest region of instability
occurs, and therefore, even if the growth rate is small, the amplitude of the combination modes
would increase up to very significant values and it may drive the system into a chaotic regime,
when carrier waves fall in instability regions. Thus, in this latter case the combination modes
would play an important role at any timescale. Hence, from the result presented in figures 3(a)
and (b), 4 and 6(a) and (b), it is realized that not only the main satellite modulation but also all
combination modes must not lie in the regions of instability. Notice that, like in the other models
such as the Klein–Gordon lattice and the Fermi–Pasta–Ulam lattice, the nonlinearity in the
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(a)
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Figure 6. Time evolution of the carrier wave with q = 15π/32 and φ0 = 0.12 modulated by a
small amplitude wave with Q = 15π/64, plane for a value of the biquadratic parameter α = 0.7.
(a) Time evolution of the amplitude of the main Fourier transform components at q (solid line),
q + Q (first dashed curve), q − Q (second dashed curve), 2q or q + 2Q (dashed–dashed–dot–dot–
dot–dashed–dashed curve) and q − 2Q (dashed–dot–dot–dot–dashed curve); the second solid line
is for the 3q mode. The third solid line is for the 4q modulation. A logarithmic scale is used for
the ordinate. (b) Time evolution of the complete Fourier spectrum.

uniaxial easy-axis ferromagnetic chains also generates combination waves at ±2q , ±3q, . . .,
etc. With the periodicity of an equivalent size of Brillouin zone taken into account (i.e. [0, 2π]
for the wavenumbers), the stability condition is given by

mod(±nq, 2π) /∈ unstable regions for n > 1, (4.5a)
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Figure 7. A typical plot of regions of modulational instability in the (Q, q) plane for the biquadratic
parameter α = 0.95 and φ0 = 0.45. It is obvious that with increasing of the biquadratic parameter
and the amplitude of the initial condition, the dark regions where the instability occurs are enlarged
while the other region corresponding to the stable region is reduced.

and

mod(q ± nQ, 2π) /∈ unstable regions for n = 1, 2, . . . . (4.5b)

According to the above criteria, a 1D ferromagnetic chain can be seen as a 1D atomic chain.
As the biquadratic exchange parameter increases, the ferromagnetic chain appears to be

less anisotropic, and according to analytical results the area of the instability regions in the
(Q, q) plane also grows so that the two former regions of instability recover each other and
new regions of instability can even appear. To illustrate this point, we have plotted in figure 7
the case of α = 0.95 with the amplitude of the initial condition φ0 = 0.45. In this condition,
the size of the instability region becomes very sensitive to a slight variation of the amplitude
of the initial carrier wave. In this figure, it is obvious that with increasing of the biquadratic
exchange parameter and the amplitude of the initial condition the dark regions where the
instability occurs are enlarged and also new regions of instability appear in the boundaries,
while the other region corresponding to the stable region is reduced.

To illustrate the effect of the anisotropy on the stability of all the excitations that may arise
in the framework of this study, we have plotted in figures 8(a)–(c) the stability diagram with
different values of the anisotropy parameter. Before we start this investigation it is worth men-
tioning that the results presented in figures 1(a), 5(a) and 7 correspond to the case of the CsNiF3

material, i.e. with the same anisotropy parameter A/J = 0.382. While looking at figure 8(a),
that corresponds to the case with the same biquadratic parameter as that of figure 1(a) but with
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Figure 8. A typical plot of regions of modulational instability in the (Q, q) plane showing the
influence of the anisotropy parameter on the stability/instability region (a) for the biquadratic
parameter α = 0.06 and φ0 = 0.12 (the same as in figure 1(a)) and the anisotropy parameter
different from that of figure 1(a) i.e. A/J = 1.52. (b) The corresponding growth rate with the same
physical parameters as those of figures 8(a) and (c) for the biquadratic parameter α = 0.95 and
φ0 = 0.45 (the same as in figure 7) with the anisotropy parameter different from that of figure 7.
i.e. A/J = 0.95.
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the anisotropy parameter A/J = 1.52, it is realized that increasing the anisotropy parameter
leads to an increase of the size of the instability zone. However, even though the unstable zone
slightly increases with the wavevector of the modulating wave, this increasing behaviour occurs
more with the wavevectors of the carrier wave situated within the range of the wavevectors of the
two initial unstable zones of figure 1(a). Thus, the two initial unstable zones finally recover each
other and it turns out that the system displays only one unstable zone that may continue increas-
ing. We also noted that reducing the anisotropy parameter may reduce the instability zone. But
what appears as a surprising behaviour is that the instability zone does not disappear completely
even with the anisotropic parameter which is nil. This is understandable from the fact that the
anisotropy only appears in two coefficients, A1 and A3, of equations (2.8b) (see the appendix).
Therefore, annealing the anisotropy in this model does not cancel the different coefficients of
the equation of motion. Hence, the instability persists even with an isotropic model. Although
figures 8(a) and (b) correspond only to the biquadratic parameter of figures 1(a) and (b), we
noticed the same type of influence of the anisotropy on the instability zone with most of the
other greatest values of the biquadratic parameter. The only peculiar behaviour occurs when
the anisotropy parameter and the biquadratic parameter are equal and therefore cancel the co-
efficient A3 of the discrete nonlinear Schrödinger-like equation (2.8b) i.e. A3 = 0. To illustrate
this point, we plotted in figure 8(c) the case with the same value of the biquadratic parameter as
in figure 7 but with an anisotropy parameter that take the same value of the biquadratic param-
eter. While looking at figure 8(c) it is realized that, contrary to what is observed in figure 7, the
stability persists in the region of wavevectors lying between the two initial unstable zones. But
the increase of the instability zone in this diagram occurs more with the appearance of the new
unstable regions in the system. From figure 8(c) it can be understood that materials for which the
biquadratic parameter and the anisotropic parameter are equal would tend to display instability
of a linear excitation of the carrier wave with some wavevectors that are modulated with a small-
amplitude wave with both short wavelength and long wavelength. In the case of materials that
display different values between the anisotropy and the biquadratic parameter, if the anisotropy
is less than that of the CsNiF3 material, the system would be more likely to display stable excita-
tions constituted with a linear carrier wave modulated in its amplitude. In the case of materials
with higher anisotropy than that of CsNiF3, they would display instability of modulated waves
with any wavelength because of the increasing behaviour of the instability zone with increasing
anisotropy. Thus, the wavevector of the modulating wave would easily fall in the unstable zone.

5. Spin-wave pattern formation in ferromagnetic chains

It was demonstrated some years ago that in one-dimensional spin chains, at suitably low
temperature, one may view thermal excitations as spin waves, supplemented by a dilute gas
of thermally magnetic solitons [7]. This argument was based on the fact that, in a 1D spin
chain, one may have solitons whose excitation energy is comparable to KBT , because they
are localized at the microscopic scale. After this particular feature of the soliton excitations in
magnetic chains, new nonlinear spin excitations in 1D spin system had been discovered and
to date it remains an active research topic [28, 29]. These excitations have envelope functions
with shape familiar from the theory of soliton-like objects, but in contrast to the solitons
they emerge as solutions of the time-dependent classical equations of motion. Furthermore,
when such an entity is present, each spin in the system engages in circular precession, with
a frequency that lies outside the spin-wave band. These states are the magnetic analogues
of the intrinsic anharmonic localized modes discussed very actively in the literature on the
vibrations of 1D anharmonic atomic chains [43]. Up to now, although some effort had been
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made to understand how to excite these new nonlinear localized magnetic excitations [44],
their possible role in the thermodynamics remains unclear. However, determining whether the
new nonlinear wave generated by MI can lead to localized excitation is still an open question
in ferromagnetic systems.

In this section, we examine the nature of different wave pattern formation that may
arise by a modulational instability process in a ferromagnetic chain described by the model
of equation (2.8b). We then continue by using the definition of wavenumber given above
(i.e. q = 2πp

N (Q = 2π P
N )) of a carrier wave (of the noise), with p in the range 0 < p � N/2,

and we choose P = 30 to always stay in the stable domain of wavenumbers (frequencies).
Reducing the range of p in the half interval of the spin lattice is linked to the fact that, after the
value of p = N/2, we start recovering the same phenomena when increasing p up the value
of N . This is explained by the symmetric property of the spin chain, which allows deduction
of the different features obtained on one side of the chain from the one obtained on the other
side of the same spin chain. The chain is still constituted of 256 spins and we chose the initial
condition given in equations (4.3).

For values of p in the range 0 < p � 20, when the initial condition is introduced in the
chain, the wave pattern displayed by the set of precessing spins is that of a wave plane with a
sinusoidal form with a constant amplitude that is not sensitive to any modulation as the time
increases. Here, the number of oscillations is equal to the value of p. In this range, the spin
wave is neither sensitive to the nonlinear effects of the chain nor to its discrete nature.

In the range 20 < p � 60, while increasing p up to the value of p = 60, we observe that
the wave pattern displayed by the precessing spins is that of a plane wave,but with the difference
here that, instead of a constant behaviour, the amplitude, which appears proportional to the
spatial magnetization distribution, is modulated in the form of an extended small-amplitude
oscillating short wave.

When the values of p lie in the range 60 < p � 80, one of the interesting phenomena
is that, although the real or imaginary parts of the wave display an oscillating and breathing
wave behaviour, the amplitude or the spatial magnetization distribution of the wave displayed
by spin motion is modulated in terms of a train of small-amplitude short waves. Each element
of the train has the shape of a soliton object. To illustrate this point, we present in figures 9(a)
and (b) the real part as well as the amplitude of the wave pattern displayed by the precessing
spins for a value of p = 65, in the case of figure 9(a), and p = 66 corresponds to the case of
figure 9(b). It is clear that the value of p influences the number of the wave oscillating with
soliton shape in the train. This phenomenon can be understood in the sense that, in this range
of p (i.e. frequency), the nonlinear effects in the discrete spin lattice lead to the creation of
an extended nonlinear spin wave with a particular fact that the amplitude appears as a train of
soliton-like objects.

Further increasing the value of p up to the range 80 < p � 90, we realize that there
appears a modulation both in the amplitude and the imaginary part as well as in the real
part of the wavefunction displayed by the spin motion. Here, the amplitude and the real and
imaginary parts appear as an extended short wave moving with breather properties. Thus,
the wave pattern displayed here is that of an extended wave that propagates with a breathing
motion. This phenomenon is depicted in figure 10, for p = 85, where the real part of the
wavefunction and its amplitude is plotted.

In the range 90 < p � 110, it happens that the wave pattern displayed by the spin motion
is constituted by an extended wave with an amplitude modulating into a train of double pulses
while the real and the imaginary part of the wave modulate with period doubling compared to
that of the amplitude. Here the nonlinear effects show some premixing to the formation of a
particular wave train.
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(a)

(b)

Figure 9. We show only the real part of the wavefunction Re(ψn), which is intercalated between
the amplitudes |ψn | that appear as a train of soliton-like objects. (a) The case of p = 65 obtained
at time t = 403 and (b) the case of p = 66 obtained time t = 440. It is clear to see how the value
of p influences the number of soliton-like objects in the chain.

If p is chosen in the range 110 < p � 127, we observe that the amplitude and the real
or imaginary part of the wave pattern constituted by the spin chain show modulation with
a depth that increases with time (see figures 11(a) and (b)). Therefore, after a certain time,
it turns out that the spin wave presents the form of a train of bubbles. These bubbles are
constituted by an imaginary part of the wavefunction that has a soliton-object-like shape while
the amplitude has a periodon-like shape. At this stage, the wave pattern of the spin chain can be
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Figure 10. We show here how extended the spin wave is in the magnetic chain through the plot of
the real part of the wavefunction Re(ψn), which is intercalated between the amplitudes |ψn | that
appear as an extended wave with a breathing behaviour. This is obtained for p = 85 at time units
t = 407.

considered as a train of periodons (see figures 11(b) and (c)). However, if we further increase
the time, the spatial magnetization distribution is transformed into a localized mode or a train
of localized modes with breathing motion. For instance, here, if p = 127, the wave pattern will
be constituted with only one localized mode that would be created on its modulated amplitude.
If we decrease the value of p, the number of localized breathing modes starts increasing
in the spin chain. This is the so-called intrinsic localized mode since it is produced in the
Brillouin zone boundary as demonstrated by previous authors [33]. As we have emphasized in
a previous section related to the result of figure 3, this can be understood in the sense that the
first Brillouin zone boundary is the region where a trapping of the pulses generated by linear
wave instability of the low-amplitude noisy background, by the discreteness effects, finally
forms strong localized or a string of strong localized long-lived excitations. To illustrate this
point we have plotted in figures 11(d) and (e) the wave pattern displayed by the precessing
spin under modulation through the spatial magnetization distribution. It is then realized that,
depending on the value of p (i.e. the wavenumber), MI processes can lead to the creation of
a hierarchy of intrinsic localized modes on the spatial magnetization distribution of the spin
chain. We have entities that have the appearance of one-soliton-like shape, two-soliton-like
shape, . . . multisoliton-like shape with breathing motion.

Finally, due to the discrete nature of the lattice, the difference in the shape of the waves
generated by MI processes strongly depends on the range of the values of the wavenumber of
the carrier wave. They can be either extended or localized.

6. Energy distribution

The previous sections had addressed the study of a linear wave with small noise when an
unstable region may exist. From the results of these previous sections it is clear that the energy
initially concentrated in one mode will finally flow to all available modes in Fourier space.
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Figure 11. We show here only the imaginary part of the wavefunction Im (ψn), which is intercalated
between the amplitudes |ψn | obtained at different time MI processes. (a) The scheme of the spin
wave representing the initial step of the MI process. We can see that, due to its modulation in the
initial condition, the amplitude slightly oscillates around a constant value while the imaginary part
is already modulated in the form a chain of soliton-like objects. (b) As for (a), the case of p = 125
obtained at time t = 573. It is clear to see how after a certain time the amplitude modulates in terms
of a periodon that recovers completely the imaginary part of the wavefunction Im(ψn). (c) The
spatial magnetization distribution Sz

n displays a periodon shape, which is constituted with periodic
nonlinear excitations. (d) The creation of the chain of intrinsic localized modes in the scheme of Sz

n ,
which represents the spatial magnetization distribution. (e) We obtain only one intrinsic localized
mode on the spatial magnetization distribution in the chain, corresponding to the case of p = 127.
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(d)

(e)

Figure 11. (Continued.)

For instance, due to the presence of additional harmonics in the spectrum, the energy is finally
delocalized in Fourier space. It has also been demonstrated by Lai and Sievers [45] that a
delocalized state in Fourier space can also be either a localized state or delocalized state in
real space depending on the relative phase between the Fourier components. However, the
Fourier space alone does not tell us the complete process of energy redistribution. However,
it is generally believed that the physical system will finally reach equipartition of energy in
a sufficiently long time since the entropy should grow during the system’s time evolution.
Otherwise, such a physical system should approach a state where the energy is evenly
distributed not only among modes in Fourier space, but also on lattice sites in real space.
A question that arises now is whether this excludes the possibility of energy localization at
intermediate stages. Of course it does not, because one of the main effects of modulational
instability is the creation of localized excitations from spatially extended excitations [46].
This modulational instability that induced energy localization has been proposed to be the
mechanism responsible for the formation of intrinsic localization by many authors [46–48].
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Precisely, it has been demonstrated in computer simulation that modulational instability can
be used to generate intrinsic localized vibrational modes in nonlinear lattices via an optimal
control scheme [48]. Indeed, the results of the previous section also confirm that with such a
rigorous method intrinsic localized excitation can be generated in a ferromagnetic chain.

To investigate the creation of an intrinsic localized mode at an intermediate stage, we
again use the same parameters as those corresponding to the result of figure 3 in a chain of 256
spins. At initial time (i.e. t = 0), the spins are coherently deviated with the initial condition
of equation (4.3). To achieve our goal, we compute through a molecular dynamics simulation
the time evolution of the energy density distribution defined in equation (4.1) for a few cases.
Figures 12(a) and (b) depict the energy distribution on the spin chain at different intermediate
stages, obtained with different initial conditions with wavevectors near the Brillouin zone
boundary. From these figures, it is realized that the amplitude of an extended nonlinear spin
wave grows smoothly for about 200 units of time (16 periods of the spin wave), while for longer
times but still at an intermediate stage compared to the timescale of figure 3 the extended modes
decay into slowly moving localized excitations. Thus, a number of localized excitations are
created at the intermediate stage, but they should be trapped by discreteness effects for longer
time. As deduced from the result of the previous section these localized excitations appear
to last for a sufficiently long timescale. It would therefore be interesting for experimental
purposes. Needless to mention, although localized excitations can be created in this way, it
remains true that their lifetime depend on the biquadratic parameter and also the amplitude of
the initial carrier wave. It is worth noting that the biquadratic exchange interaction influences
not only the anharmonicity but also the discreteness of the lattice because, increasing the
biquadratic parameter up to the range 0.5 < α < 1, and then also increasing the amplitude of
the carrier wave, we realized that the lifetime of the localized excitations decreases. This is
the proof that in such conditions the spin lattice is less discrete and less anharmonic. To obtain
a more quantitative characterization, while taking into account the presence of an external
applied magnetic field, we define the energy–energy correlation function as [49]

CE(n, t) =
〈∑N−n

m e(m, t)e(m + n, t) − 1
N−n

∑N−n
m′ e(m ′, t)

∑N−n
m′′ e(m ′′, t)

∑N−n
m e2(m, t)− 1

N−n

∑N−n
m′ e(m ′, t)

∑N−n
m′′ e(m ′′, t)

〉
; (6.1)

here, the symbol 〈· · ·〉 indicates an ensemble average over initial conditions and the function
e(m, t) is the energy density per site given in equation (4.1).

Since the initial condition corresponds to a linear wave, at the initial time, the system
displays a uniform energy distribution as can be seen in figures 12(a) and (b). Thus CE(n, 0),
is just a uniform background. While looking at figure 13, it is realized that, with increasing time
for about 200 units of time, the instability destroys the linear wave and a maximum develops
near n = 0. This maximum value of the energy–energy correlation function decreases as we
move towards the spin chain. This behaviour is explained by localization of energy since it
is not equally distributed on every spin lattice site. Furthermore, if we keep increasing the
simulation time, it would happens that, in addition to the maximal value of the energy–energy
correlation function near n = 0, which increases with time, a new maximum with greatest
value occurs around the range 10 < n � 50. This picture can be understood as a phenomenon
of an increase of the number of localized modes with increasing time. The fact that this
energy–energy correlation function confirms the localization phenomenon can be understood
in the sense that, from our initial condition within such a Holstein–Primakoff approximation,
there appear in the system magnon–magnon interactions. But since the magnon interaction
in a ferromagnet with easy axis anisotropy is attractive in nature, they finally lead the initial
spatially delocalized excitations to be characterized in the system by a tendency to accumulate
in some region of space.



3108 J-P Nguenang et al

(a)

(b)

Figure 12. We show here the creation of intrinsic localized spin-wave excitations from an extended
nonlinear spin wave via modulational instability. The biquadratic parameter is α = 0.06. Plotted
is the time evolution of the energy density distribution in real space. (a) p = 125; (b) p = 127.

7. Conclusion

We have investigated the modulational instability of extended nonlinear spin waves in a
ferromagnetic chain with easy axis anisotropy. Our analysis revealed that some of the
interesting features of the dynamics of a ferromagnetic spin chain, whose spins can deviate
from the direction of the applied magnetic field, can be modelled with a discrete nonlinear
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Figure 13. Energy–energy correlation function as a function of space and time. The curve is
obtained here after averaging over ten initial conditions with the same parameters as those of
figure 3.

Schrödinger-like equation (DNSL). This equation includes the effects of both linear and
nonlinear terms. With an MI approach, we have shown that, depending on the strength of the
biquadratic exchange energy relative to the normal exchange energy and then to the anisotropy
energy, the stability domain in the (q, Q) plane can grow or reduce. When it reduces, more
often, nonlinear spin waves both with short wavelength and long wavelength are stable to
modulation for a large range of wavevector. We have illustrated here that, with periodic
boundary conditions applied, a finite ferromagnetic chain of appropriate spin possesses a
rich spectrum of both extended and intrinsic localized nonlinear spin excitations. One of the
main features found for this discrete model for localized modes is the possibility of finding
a long-lived intrinsic localized spin wave with wavevectors near the Brillouin zone boundary
when the strength of the biquadratic exchange interaction relative to the normal exchange
interaction is less than a certain limit i.e. 0 < α � 0.5, in which it becomes comparable to the
anisotropy energy strength. This stability is also explained by the antagonist effects between
the anisotropy interaction and the biquadratic exchange interaction. Therefore, our numerical
simulations have demonstrated that, with a suitable choice of the biquadratic parameter, it
is possible to create long-lived localized excitations by driving the ferromagnetic chain into
a nonlinear regime. The presence of this localized excitation confirms the fact that in an
easy-axis ferromagnet the magnons attract each other and this attraction is responsible for the
phenomena that are associated with the appearance of spatially localized magnetic excitations.

Finally, the results demonstrate the importance and the potential of a simple, intuitive and
physically appealing picture, which, even if it might not be quantitatively correct, reasonably
describes the complex dynamics and certainly stimulates further experiments on magnetic
model systems. The fundamental question for the existence of the new nonlinear excitations
with soliton-like shape in a 1D ferromagnet,as suggested by our investigating theory,appears to
have been answered positively by our numerical experiments. Needless to mention, for small-
and medium-amplitude waves, the Holstein–Primakoff has precisely been introduced to be
better than a classical limit. Nevertheless, this Holstein–Primakoff remains an approximation,
and in the long term the role of the term that is neglected may become significant, i.e. the
case of large nonlinearity. We want to stress that with about 180 periods of the spin wave, the
early stage of modulational instability is probably better described by our Holstein–Primakoff
approximation, but in our opinion it is obvious that 180 periods of a spin wave is a time which
is still rather short with respect to the typical timescales of the spin-wave system to ensure the
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validity of our study. It is however clear that, in order to determine the behaviour of the system
on longer timescales, it would be necessary to go beyond the simple Holstein–Primakoff
approximation. Therefore further computational, experimental and theoretical efforts in a
next paper should now aim at the investigation of detail of these soliton-like objects bearing in
systems where higher nonlinearity is taken into account at longer timescales, because higher
orders in the amplitude would certainly enter when time becomes sufficiently large.
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Appendix

We shall start this session by defining the coefficients of equation (2.8b),

A1 = gh − 2ga; A2 = −2gα − 1; A3 = (ga−gα)ε
2; (A.1)

A4 = (9gα − 1)ε2

4
; A5 = (1 − 17gα)ε2

4
; A6 = gαε

2; (A.2)

with

gh = gµB B

J
; ga = A

J
; gα = α(Sc)

2; Sc = h̄S; (A.3)

In order to define the difference of the matrix in equation (2.13), let us start by defining

α01 = 2A2φ0(cos(Q)− 1) cos(q) + A3φ
3
0 + 6A4φ

3
0 cos(Q) cos(q)

+ 2A5φ
3
0 cos(Q)− 2A6φ

3
0(2 cos(Q)− 1) cos(2q) (A.4)

a1 = −α01φ0, a2 = 0, (A.5)

α03 = −A3φ
3
0 − 2A4φ

3
0(2 cos(Q)− 1) cos(q)− 2A5φ

3
0 cos(Q) + 2A6φ

3
0 cos(2q) (A.6)

a3 = −α03φ0 a4 = 0, c1 = 0, (A.7)

c2 = −2A2(cos(Q)− 1) cos(q)− A3φ
2
0 + 2A4φ

2
0(3 cos(Q)− 1) cos(q)

− 2A5φ
2
0 cos(Q) + 2A6φ

2
0(2 cos(Q) + 1) cos(2q) (A.8)

c3 = 0, c4 = −A3φ
2
0 − 4A4φ

4
0 cos(Q) cos(q)− 2A5φ

2
0 cos(Q) + 2A6φ

2
0 cos(2q)

d1 = a3, d2 = 0, d3 = a1, d4 = 0, e1 = 0,

e2 = c4, e3 = 0, e4 = c2. (A.9)

The polynomial coefficients of equation (3.6) are given by

�0 = (c2a1)
2 + (a3c4)

2 − (a1c4)
2 �2 = 2(c2a1 + a3c4); (A.10)

from these coefficients, we can express

α1 =
−l2 −

√
l2
2 − 4l0

2φ2
0

; α2 =
−l2 +

√
l2
2 − 4l0

2φ2
0

(A.11)

and finally

�im1 = ±

√√√√−l2 −
√

l2
2 − 4l0

2φ2
0

; �im2 = ±

√√√√−l2 +
√

l2
2 − 4l0

2φ2
0

. (A.12)
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The energy coefficients of equation (4.1) are defined by

e1 =
(

gµB Be − 2A +
J (1 + 2α)

2

)
ε2; e2 = e3 =

(
J (1 + 2α)

2

)
ε2;

e4 =
(

A − Jα

2

)
ε4; (A.13)

e5 = e8 = − Jα

2
ε4, e6 =

(
J (10α − 1)

2

)
ε4; e7 =

(
J (1 − 6α)

2

)
ε4; (A.14)

It is important to notice that, to evaluate this energy term, there is a need to achieve some
summations.
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